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Abstract

Deep generative models allow for photorealistic image
synthesis at high resolutions. But for many applications,
this is not enough: content creation also needs to be con-
trollable. While several recent works investigate how to dis-
entangle underlying factors of variation in the data, most
of them operate in 2D and hence ignore that our world
is three-dimensional. Further, only few works consider
the compositional nature of scenes. Our key hypothesis is
that incorporating a compositional 3D scene representation
into the generative model leads to more controllable image
synthesis. Representing scenes as compositional genera-
tive neural feature fields allows us to disentangle one or
multiple objects from the background as well as individual
objects’ shapes and appearances while learning from un-
structured and unposed image collections without any ad-
ditional supervision. Combining this scene representation
with a neural rendering pipeline yields a fast and realistic
image synthesis model. As evidenced by our experiments,
our model is able to disentangle individual objects and al-
lows for translating and rotating them in the scene as well
as changing the camera pose.

1. Introduction

The ability to generate and manipulate photorealistic im-
age content is a long-standing goal of computer vision and
graphics. Modern computer graphics techniques achieve
impressive results and are industry standard in gaming and
movie productions. However, they are very hardware ex-
pensive and require substantial human labor for 3D content
creation and arrangement.

In recent years, the computer vision community has
made great strides towards highly-realistic image gener-
ation. In particular, Generative Adversarial Networks
(GANs) [24] emerged as a powerful class of generative
models. They are able to synthesize photorealistic images
at resolutions of 10242 pixels and beyond [6,14,15,39,40].
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Figure 1: Overview. We represent scenes as compositional
generative neural feature fields. For a randomly sampled
camera, we volume render a feature image of the scene
based on individual feature fields. A 2D neural rendering
network converts the feature image into an RGB image.
While training only on raw image collections, at test time
we are able to control the image formation process wrt.
camera pose, object poses, as well as the objects’ shapes
and appearances. Further, our model generalizes beyond
the training data, e.g. we can synthesize scenes with more
objects than were present in the training images. Note that
for clarity we visualize volumes in color instead of features.

Despite these successes, synthesizing realistic 2D im-
ages is not the only aspect required in applications of gen-
erative models. The generation process should also be con-
trollable in a simple and consistent manner. To this end,
many works [9, 25, 39, 43, 44, 48, 54, 71, 74, 97, 98] investi-
gate how disentangled representations can be learned from
data without explicit supervision. Definitions of disentan-
glement vary [5, 53], but commonly refer to being able to
control an attribute of interest, e.g. object shape, size, or
pose, without changing other attributes. Most approaches,
however, do not consider the compositional nature of scenes
and operate in the 2D domain, ignoring that our world is
three-dimensional. This often leads to entangled represen-
tations (Fig. 2) and control mechanisms are not built-in, but
need to be discovered in the latent space a posteriori. These
properties, however, are crucial for successful applications,
e.g. a movie production where complex object trajectories



(a) Translation of Left Object (2D-based Method [71])

(b) Translation of Left Object (Ours)

(c) Circular Translation (Ours) (d) Add Objects (Ours)

Figure 2: Controllable Image Generation. While most
generative models operate in 2D, we incorporate a compo-
sitional 3D scene representation into the generative model.
This leads to more consistent image synthesis results, e.g.
note how, in contrast to our method, translating one object
might change the other when operating in 2D (Fig. 2a and
2b). It further allows us to perform complex operations like
circular translations (Fig. 2c) or adding more objects at test
time (Fig. 2d). Both methods are trained unsupervised on
raw unposed image collections of two-object scenes.

need to be generated in a consistent manner.
Several recent works therefore investigate how to incor-

porate 3D representations, such as voxels [32,63,64], prim-
itives [46], or radiance fields [77], directly into generative
models. While these methods allow for impressive results
with built-in control, they are mostly restricted to single-
object scenes and results are less consistent for higher reso-
lutions and more complex and realistic imagery (e.g. scenes
with objects not in the center or cluttered backgrounds).
Contribution: In this work, we introduce GIRAFFE, a
novel method for generating scenes in a controllable and
photorealistic manner while training from raw unstructured
image collections. Our key insight is twofold: First, incor-
porating a compositional 3D scene representation directly
into the generative model leads to more controllable im-
age synthesis. Second, combining this explicit 3D repre-
sentation with a neural rendering pipeline results in faster
inference and more realistic images. To this end, we repre-
sent scenes as compositional generative neural feature fields
(Fig. 1). We volume render the scene to a feature image
of relatively low resolution to save time and computation.
A neural renderer processes these feature images and out-
puts the final renderings. This way, our approach achieves
high-quality images and scales to real-world scenes. We
find that our method allows for controllable image synthesis
of single-object as well as multi-object scenes when trained
on raw unstructured image collections. Code and data is
available at https://github.com/autonomousvision/giraffe.

2. Related Work
GAN-based Image Synthesis: Generative Adversarial
Networks (GANs) [24] have been shown to allow for pho-
torealistic image synthesis at resolutions of 10242 pixels
and beyond [6, 14, 15, 39, 40]. To gain better control over
the synthesis process, many works investigate how factors
of variation can be disentangled without explicit supervi-
sion. They either modify the training objective [9, 40, 71]
or network architecture [39], or investigate latent spaces of
well-engineered and pre-trained generative models [1, 16,
23, 27, 34, 78, 96]. All of these works, however, do not ex-
plicitly model the compositional nature of scenes. Recent
works therefore investigate how the synthesis process can
be controlled at the object-level [3,4,7,18,19,26,45,86,90].
While achieving photorealistic results, all aforementioned
works model the image formation process in 2D, ignoring
the three-dimensional structure of our world. In this work,
we advocate to model the formation process directly in 3D
for better disentanglement and more controllable synthesis.

Implicit Functions: Using implicit functions to represent
3D geometry has gained popularity in learning-based 3D
reconstruction [11, 12, 22, 59, 60, 65, 67, 69, 76] and has
been extended to scene-level reconstruction [8, 13, 35, 72,
79]. To overcome the need of 3D supervision, several
works [50, 51, 66, 81, 92] propose differentiable rendering
techniques. Mildenhall et al. [61] propose Neural Radiance
Fields (NeRFs) in which they combine an implicit neural
model with volume rendering for novel view synthesis of
complex scenes. Due to their expressiveness, we use a
generative variant of NeRFs as our object-level represen-
tation. In contrast to our method, the discussed works re-
quire multi-view images with camera poses as supervision,
train a single network per scene, and are not able to generate
novel scenes. Instead, we learn a generative model from un-
structured image collections which allows for controllable,
photorealistic image synthesis of generated scenes.

3D-Aware Image Synthesis: Several works investigate
how 3D representations can be incorporated as inductive
bias into generative models [21,29–32,46,55,63,64,75,77].
While many approaches use additional supervision [2, 10,
87,88,99], we focus on works which are trained on raw im-
age collections like our approach.
Henzler et al. [32] learn voxel-based representations us-
ing differentiable rendering. The results are 3D control-
lable, but show artifacts due to the limited voxel reso-
lutions caused by their cubic memory growth. Nguyen-
Phuoc et al. [63, 64] propose voxelized feature-grid repre-
sentations which are rendered to 2D via a reshaping op-
eration. While achieving impressive results, training be-
comes less stable and results less consistent for higher reso-
lutions. Liao et al. [46] use abstract features in combination
with primitives and differentiable rendering. While han-

https://github.com/autonomousvision/giraffe


dling multi-object scenes, they require additional supervi-
sion in the form of pure background images which are hard
to obtain for real-world scenes. Schwarz et al. [77] propose
Generative Neural Radiances Fields (GRAF). While achiev-
ing controllable image synthesis at high resolutions, this
representation is restricted to single-object scenes and re-
sults degrade on more complex, real-world imagery. In con-
trast, we incorporate compositional 3D scene structure into
the generative model such that it naturally handles multi-
object scenes. Further, by integrating a neural rendering
pipeline [20, 41, 42, 49, 62, 80, 81, 83, 84], our model scales
to more complex, real-world data.

3. Method
Our goal is a controllable image synthesis pipeline which

can be trained from raw image collections without addi-
tional supervision. In the following, we discuss the main
components of our method. First, we model individual ob-
jects as neural feature fields (Sec. 3.1). Next, we exploit
the additive property of feature fields to composite scenes
from multiple individual objects (Sec. 3.2). For rendering,
we explore an efficient combination of volume and neural
rendering techniques (Sec. 3.3). Finally, we discuss how
we train our model from raw image collections (Sec. 3.4).
Fig. 3 contains an overview of our method.

3.1. Objects as Neural Feature Fields
Neural Radiance Fields: A radiance field is a continuous
function f which maps a 3D point x ∈ R3 and a view-
ing direction d ∈ S2 to a volume density σ ∈ R+ and an
RGB color value c ∈ R3. A key observation in [61, 82] is
that the low dimensional input x and d needs to be mapped
to higher-dimensional features to be able to represent com-
plex signals when f is parameterized with a neural network.
More specifically, a pre-defined positional encoding is ap-
plied element-wise to each component of x and d:

γ(t, L) =

(sin(20tπ), cos(20tπ), . . . , sin(2Ltπ), cos(2Ltπ))
(1)

where t is a scalar input, e.g. a component of x or d, and L
the number of frequency octaves. In the context of genera-
tive models, we observe an additional benefit of this repre-
sentation: It introduces an inductive bias to learn 3D shape
representations in canonical orientations which otherwise
would be arbitrary (see Fig. 11).

Following implicit shape representations [12, 59, 69],
Mildenhall et al. [61] propose to learn Neural Radiance
Fields (NeRFs) by parameterizing f with a multi-layer per-
ceptron (MLP):

fθ : RLx × RLd → R+ × R3

(γ(x), γ(d)) 7→ (σ, c)
(2)

where θ indicate the network parameters and Lx, Ld the
output dimensionalities of the positional encodings.
Generative Neural Feature Fields: While [61] fits θ to
multiple posed images of a single scene, Schwarz et al. [77]
propose a generative model for Neural Radiance Fields
(GRAF) that is trained from unposed image collections. To
learn a latent space of NeRFs, they condition the MLP on
shape and appearance codes zs, za ∼ N (0, I):

gθ : RLx × RLd × RMs × RMa → R+ × R3

(γ(x), γ(d), zs, za) 7→ (σ, c)
(3)

where Ms,Ma are the dimensionalities of the latent codes.
In this work we explore a more efficient combination of

volume and neural rendering. We replace GRAF’s formu-
lation for the three-dimensional color output c with a more
generic Mf -dimensional feature f and represent objects as
Generative Neural Feature Fields:

hθ : RLx × RLd × RMs × RMa → R+ × RMf

(γ(x), γ(d), zs, za) 7→ (σ, f)
(4)

Object Representation: A key limitation of NeRF and
GRAF is that the entire scene is represented by a single
model. As we are interested in disentangling different en-
tities in the scene, we need control over the pose, shape
and appearance of individual objects (we consider the back-
ground as an object as well). We therefore represent each
object using a separate feature field in combination with an
affine transformation

T = {s, t,R} (5)

where s, t ∈ R3 indicate scale and translation parameters,
and R ∈ SO(3) a rotation matrix. Using this represen-
tation, we transform points from object to scene space as
follows:

k(x) = R ·

s1 s2
s3

 · x+ t (6)

In practice, we volume render in scene space and evaluate
the feature field in its canonical object space (see Fig. 1):

(σ, f) = hθ(γ(k
−1(x)), γ(k−1(d)), zs, za) (7)

This allows us to arrange multiple objects in a scene. All
object feature fields share their weights and T is sampled
from a dataset-dependent distribution (see Sec. 3.4).

3.2. Scene Compositions
As discussed above, we describe scenes as compositions

of N entities where the first N − 1 are the objects in the
scene and the last represents the background. We consider
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Figure 3: GIRAFFE. Our generator Gθ takes a camera pose ξ and N shape and appearance codes zis, z
i
a and affine transfor-

mations Ti as input and synthesizes an image of the generated scene which consists of N − 1 objects and a background. The
discriminator Dφ takes the generated image Î and the real image I as input and our full model is trained with an adversarial
loss. At test time, we can control the camera pose, the shape and appearance codes of the objects, and the objects’ poses in
the scene. Orange indicates learnable and blue non-learnable operations.

two cases: First, N is fixed across the dataset such that the
images always contain N − 1 objects plus the background.
Second, N is varied across the dataset. In practice, we
use the same representation for the background as for ob-
jects except that we fix the scale and translation parameters
sN , tN to span the entire scene, and to be centered at the
scene space origin.

Composition Operator: To define the composition opera-
tor C, let’s recall that a feature field of a single entity hiθi
predicts a density σi ∈ R+ and a feature vector fi ∈ RMf

for a given point x and viewing direction d. When combin-
ing non-solid objects, a natural choice [17] for the overall
density at x is to sum up the individual densities and to use
the density-weighted mean to combine all features at (x,d):

C(x,d) =

(
σ,

1

σ

N∑
i=1

σifi

)
, where σ =

N∑
i=1

σi (8)

While being simple and intuitive, this choice for C has an
additional benefit: We ensure gradient flow to all entities
with a density greater than 0.

3.3. Scene Rendering
3D Volume Rendering: While previous works [47, 57, 61,
77] volume render an RGB color value, we extend this for-
mulation to rendering an Mf -dimensional feature vector f .

For given camera extrinsics ξ, let {xj}Nsj=1 be sam-
ple points along the camera ray d for a given pixel, and
(σj , fj) = C(xj ,d) the corresponding densities and fea-
ture vectors of the field. The volume rendering operator
πvol [37] maps these evaluations to the pixel’s final feature
vector f :

πvol : (R+ × RMf )Ns → RMf , {σj , fj}Nsj=1 7→ f (9)

Using numerical integration as in [61], f is obtained as

f =

Ns∑
j=1

τjαjfj τj =

j−1∏
k=1

(1− αk) αj = 1− e−σjδj

(10)

where τj is the transmittance, αj the alpha value for xj ,
and δj = ||xj+1 − xj ||2 the distance between neighboring
sample points. The entire feature image is obtained by eval-
uating πvol at every pixel. For efficiency, we render feature
images at resolution 162 which is lower than the output res-
olution of 642 or 2562 pixels. We then upsample the low-
resolution feature maps to higher-resolution RGB images
using 2D neural rendering. As evidenced by our experi-
ments, this has two advantages: increased rendering speed
and improved image quality.
2D Neural Rendering: The neural rendering operator

πneural
θ : RHV ×WV ×Mf → RH×W×3 (11)

with weights θ maps the feature image IV ∈ RHV ×WV ×Mf

to the final synthesized image Î ∈ RH×W×3. We param-
eterize πneural

θ as a 2D convolutional neural network (CNN)
with leaky ReLU [56, 89] activation (Fig. 4) and combine
nearest neighbor upsampling with 3× 3 convolutions to in-
crease the spatial resolution. We choose small kernel sizes
and no intermediate layers to only allow for spatially small
refinements to avoid entangling global scene properties dur-
ing image synthesis while at the same time allowing for in-
creased output resolutions. Inspired by [40], we map the
feature image to an RGB image at every spatial resolution,
and add the previous output to the next via bilinear upsam-
pling. These skip connections ensure a strong gradient flow
to the feature fields. We obtain our final image prediction Î
by applying a sigmoid activation to the last RGB layer. We
validate our design choices in an ablation study (Tab. 4).



Figure 4: Neural Rendering Operator. The feature image
IV is processed by n blocks of nearest neighbor upsampling
and 3× 3 convolutions with leaky ReLU activations. At ev-
ery resolution, we map the feature image to an RGB image
with a 3×3 convolution and add it to the previous output via
bilinear upsampling. We apply a sigmoid activation to ob-
tain the final image Î. Gray color indicates outputs, orange
learnable, and blue non-learnable operations.

3.4. Training

Generator: We denote the full generative process formally
as

Gθ({zis, zia,Ti}Ni=1, ξ) = πneural
θ (IV )

where IV = {πvol({C(xjk,dk)}Nsj=1)}
HV ×WV

k=1

(12)

and N is the number of entities in the scene, Ns the number
of sample points along each ray, dk is the ray for the k-th
pixel, and xjk the j-th sample point for the k-th pixel / ray.

Discriminator: We parameterize the discriminator Dφ as a
CNN [73] with leaky ReLU activation.

Training: During training, we sample the the number of
entities in the scene N ∼ pN , the latent codes zis, z

i
a ∼

N (0, I), as well as a camera pose ξ ∼ pξ and object-level
transformations Ti ∼ pT . In practice, we define pξ and
pT as uniform distributions over dataset-dependent camera
elevation angles and valid object transformations, respec-
tively.1 The motivation for this choice is that in most real-
world scenes, objects are arbitrarily rotated, but not tilted
due to gravity. The observer (the camera in our case), in
contrast, can freely change its elevation angle wrt. the scene.

We train our model with the non-saturating GAN objec-

1Details can be found in the supplementary material.

tive [24] and R1 gradient penalty [58]

V(θ, φ) =
Ezis,z

i
a∼N , ξ∼pξ,Ti∼pT

[
f(Dφ(Gθ({zis, zia,Ti}i, ξ))

]
+ EI∼pD

[
f(−Dφ(I))− λ‖∇Dφ(I)‖2

]
(13)

where f(t) = − log(1 + exp(−t)), λ = 10, and pD indi-
cates the data distribution.

3.5. Implementation Details
All object feature fields {hiθi}

N−1
i=1 share their weights

and we parametrize them as MLPs with ReLU activations.
We use 8 layers with a hidden dimension of 128 and a den-
sity and a feature head of dimensionality 1 and Mf = 128,
respectively. For the background feature field hNθN , we use
half the layers and hidden dimension. We use Lx = 2 ·3 ·10
and Ld = 2 · 3 · 4 for the positional encodings. We sam-
ple Ms = 64 points along each ray and render the feature
image IV at 162 pixels. We use an exponential moving av-
erage [93] with decay 0.999 for the weights of the genera-
tor. We use the RMSprop optimizer [85] with a batch size
of 32 and learning rates of 1× 10−4 and 5× 10−4 for the
discriminator and generator, respectively. For experiments
at 2562 pixels, we set Mf = 256 and half the generator
learning rate to 2.5× 10−4.

4. Experiments
Datasets: We report results on commonly-used single-
object datasets Chairs [68], Cats [95], CelebA [52], and
CelebA-HQ [38]. The first consists of synthetic renderings
of Photoshape chairs [70], and the others are image collec-
tions of cat and human faces, respectively. The data com-
plexity is limited as the background is purely white or only
takes up a small part of the image. We further report results
on the more challenging single-object, real-world datasets
CompCars [91], LSUN Churches [94], and FFHQ [39]. For
CompCars, we randomly crop the images to achieve more
variety of the object’s position in the image.2 For these
datasets, disentangling objects is more complex as the ob-
ject is not always in the center and the background is more
cluttered and takes up a larger part of the image. To test our
model on multi-object scenes, we use the script from [36]
to render scenes with 2, 3, 4, or 5 random primitives (Clevr-
N). To test our model on scenes with a varying number
of objects, we also run our model on the union of them
(Clevr-2345).
Baselines: We compare against voxel-based Platonic-
GAN [32], BlockGAN [64], and HoloGAN [63], and ra-
diance field-based GRAF [77] (see Sec. 2 for a discussion

2We do not apply random cropping for [32] and [77] as we find that
they cannot handle scenes with non-centered objects (see supplementary).



Chairs CelebA Churches Cars Clevr-5 Clevr-2345

Figure 5: Scene Disentanglement. From top to bottom, we
show only backgrounds, only objects, color-coded object
alpha maps, and the final synthesized images at 642 pixel
resolution. Disentanglement emerges without supervision,
and the model learns to generate plausible backgrounds al-
though the training data only contains images with objects.

Figure 6: Training Progression. We show renderings of
our model on Clevr-2345 at 2562 pixels after 0, 1, 2, 3,
10, and 100-thousand iterations. Unsupervised disentangle-
ment emerges already at the very beginning of training.

of the methods). We further compare against HoloGAN
w/o 3D Conv, a variant of [63] proposed in [77] for higher
resolutions. We additionally report a ResNet-based [28]
2D GAN [58] for reference.

Metrics: We report the Frechet Inception Distance (FID)
score [33] to quantify image quality. We use 20,000 real
and fake samples to calculate the FID score.

4.1. Controllable Scene Generation
Disentangled Scene Generation: We first analyze to
which degree our model learns to generate disentangled
scene representations. In particular, we are interested if
objects are disentangled from the background. Towards
this goal, we exploit the fact that our composition opera-
tor is a simple addition operation (Eq. 8) and render indi-
vidual components and object alpha maps (Eq. 10). Note
that while we always render the feature image at 162 during
training, we can choose arbitrary resolutions at test time.

Fig. 5 suggests that our method disentangles objects
from the background. Note that this disentanglement
emerges without any supervision, and the model learns to
generate plausible backgrounds without ever having seen
a pure background image, implicitly solving an inpainting
task. We further observe that our model correctly disentan-
gles individual objects when trained on multi-object scenes
with fixed or varying number of objects. We further find that
unsupervised disentanglement is a property of our model

Cats CelebA Cars Chairs Churches

2D GAN [58] 18 15 16 59 19
Plat. GAN [32] 318 321 299 199 242
BlockGAN [64] 47 69 41 41 28
HoloGAN [63] 27 25 17 59 31
GRAF [77] 26 25 39 34 38
Ours 8 6 16 20 17

Table 1: Quantitative Comparison. We report the FID
score (↓) at 642 pixels for baselines and our method.

CelebA-HQ FFHQ Cars Churches Clevr-2

HoloGAN [63] 61 192 34 58 241
w/o 3D Conv 33 70 49 66 273

GRAF [77] 49 59 95 87 106
Ours 21 32 26 30 31

Table 2: Quantitative Comparison. We report the FID
score (↓) at 2562 pixels for the strongest 3D-aware baselines
and our method.

2D GAN Plat. GAN BlockGAN HoloGAN GRAF Ours

1.69 381.56 4.44 7.80 0.68 0.41

Table 3: Network Parameter Comparison. We report the
number of generator network parameters in million.

which emerges already at the very beginning of training
(Fig. 6). Note how our model synthesizes individual objects
before spending capacity on representing the background.

Controllable Scene Generation: As individual compo-
nents of the scene are correctly disentangled, we analyze
how well they can be controlled. More specifically, we are
interested if individual objects can be rotated and translated,
but also how well shape and appearance can be controlled.
In Fig. 7, we show examples in which we control the scene
during image synthesis. We rotate individual objects, trans-
late them in 3D space, or change the camera elevation. By
modeling shape and appearance for each entity with a dif-
ferent latent code, we are further able to change the objects’
appearances without altering their shape.

Generalization Beyond Training Data: The learned com-
positional scene representations allow us to generalize out-
side the training distribution. For example, we can increase
the translation ranges of objects or add more objects than
there were present in the training data (Fig. 8).

4.2. Comparison to Baseline Methods
Comparing to baseline methods, our method achieves

similar or better FID scores at both 642 (Tab. 1) and
2562 (Tab. 2) pixel resolutions. Qualitatively, we observe
that while all approaches allow for controllable image syn-
thesis on datasets of limited complexity, results are less con-
sistent for the baseline methods on more complex scenes



(a) Object Rotation (b) Camera Elevation

(c) Object Appearance

(d) Depth Translation (e) Horizontal Translation

(f) Circular Translation of One Object Around Another Object

Figure 7: Controllable Scene Generation at 2562 Pixel Resolution. Controlling the generated scenes during image synthe-
sis: Here we rotate or translate objects, change their appearances, and perform complex operations like circular translations.

(a) Increase Depth Translation

(b) Increase Horizontal Translation

(c) Add Additional Objects (Trained on Two-Object Scenes)

(d) Add Additional Objects (Trained on Single-Object Scenes)

Figure 8: Generalization Beyond Training Data. As indi-
vidual objects are correctly disentangled, our model allows
for generating out of distribution samples at test time. For
example, we can increase the translation ranges or add more
objects than there were present in the training data.

with cluttered backgrounds. Further, our model disentan-
gles the object from the background, such that we are able
to control the object independent of the background (Fig. 9).

We further note that our model achieves similar or bet-
ter FID scores than the ResNet-based 2D GAN [58] despite
fewer network parameters (0.41m compared to 1.69m).

(a) 360◦ Object Rotation for HoloGAN [63]

(b) 360◦ Object Rotation for GRAF [77]

(c) 360◦ Object Rotation for Our Method

Figure 9: Qualitative Comparison. Compared to baseline
methods, we achieve more consistent image synthesis for
complex scenes with cluttered background at 642 (top rows)
and 2562 (bottom rows) pixel resolutions. Note that we dis-
entangle the object from the background and are able to ro-
tate only the object while keeping the background fixed.

This confirms our initial hypothesis that using a 3D rep-
resentation as inductive bias results in better outputs. Note
that for fair comparison, we only report methods which are



Full -Skip -Act. +NN. RGB Up. +Bi. Feat. Up.

16.16 16.66 21.61 17.28 20.68

Table 4: Ablation Study. We report FID (↓) on CompCars
without RGB skip connections (-Skip), without final activa-
tion (-Act.), with nearest neighbor instead of bilinear image
upsampling (+ NN. RGB Up.), and with bilinear instead of
nearest neighbor feature upsampling (+ Bi. Feat. Up.).

Figure 10: Neural Renderer. We change the background
while keeping the foreground object fixed for our method at
2562 pixel resolution. Note how the neural renderer realis-
tically adapts the objects’ appearances to the background.

(a) 0◦ Rotation for Axis-Aligned Positional Encoding [61]

(b) 0◦ Rotation for Random Fourier Features [82]

Figure 11: Canonical Pose. In contrast to random Fourier
features [82], axis-aligned positional encoding (1) encour-
ages the model to learn objects in a canonical pose.

similar wrt. network size and training time (see Tab. 3).

4.3. Ablation Studies
Importance of Individual Components: The ablation
study in Tab. 4 shows that our design choices of RGB skip
connections, final activation function, and selected upsam-
pling types improve results and lead to higher FID scores.
Effect of Neural Renderer: A key difference to [77] is
that we combine volume with neural rendering. The quan-
titative (Tab. 1 and 2) and qualitative comparisons (Fig. 9)
indicate that our approach leads to better results, in particu-
lar for complex, real-world data. Our model is more expres-
sive and can better handle the complexity of real scenes, e.g.
note how the neural renderer realistically adapts object ap-
pearances to the background (Fig. 10). Further, we observe
a rendering speed up: compared to [77], total rendering time
is reduced from 110.1ms to 4.8ms, and from 1595.0ms to
5.9ms for 642 and 2562 pixels, respectively.
Positional Encoding: We use axis-aligned positional en-
coding for the input point and viewing direction (Eq. 1).
Surprisingly, this encourages the model to learn canoncial

Figure 12: Dataset Bias. Eye and hair rotation are exam-
ples for dataset biases: They primarily face the camera, and
our model tends to entangle them with the object rotation.

representations as it introduces a bias to align the object
axes with highest symmetry with the canonical axes which
allows the model to exploit object symmetry (Fig. 11).

4.4. Limitations
Dataset Bias: Our method struggles to disentangle factors
of variation if there is an inherent bias in the data. We show
an example in Fig. 12: In the celebA-HQ dataset, the eye
and hair orientation is predominantly pointing towards the
camera, regardless of the face rotation. When rotating the
object, the eyes and hair in our generated images do not stay
fixed but are adjusted to meet the dataset bias.
Object Transformation Distributions: We sometimes ob-
serve disentanglement failures, e.g. for Churches where the
background contains a church, or for CompCars where the
foreground contains background elements (see Sup. Mat.).
We attribute these to mismatches between the assumed uni-
form distributions over camera poses and object-level trans-
formations and their real distributions.

5. Conclusion
We present GIRAFFE, a novel method for controllable

image synthesis. Our key idea is to incorporate a compo-
sitional 3D scene representation into the generative model.
By representing scenes as compositional generative neural
feature fields, we disentangle individual objects from the
background as well as their shape and appearance without
explicit supervision. Combining this with a neural renderer
yields fast and controllable image synthesis. In the future,
we plan to investigate how the distributions over object-
level transformations and camera poses can be learned from
data. Further, incorporating supervision which is easy to
obtain, e.g. predicted object masks, is a promising approach
to scale to more complex, multi-object scenes.
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